What Is Microsoft Network Adapter Multiplexor

Active1 year, 11 months ago
  • Microsoft Network Adapter Multiplexor Protocol - Windows 10 Service. Microsoft Network Adapter Multiplexor Protocol. This service also exists in Windows 8. Startup Type.
  • What is the Microsoft network adapter multiplexor protocol. It is basically a kernel mode driver used for Network Interface Card (NIC) bonding. By default, the protocol is installed as part of the physical network adapter initialization. The one essence of this protocol is for NIC teaming.
  • Microsoft does not support using this GUI or netcfg to uninstall protocols or built-in drivers. Instead, y ou can unbind the driver from Network Adapters either by using this GUI or the PowerShell cmdlet 'Disable-NetAdapterBinding.' This is effectively the same as uninstalling the driver.

After I upgraded my laptop from Windows 8.1 to Windows 10, my network connectivity was gone because all protocols were unchecked in the adapter settings. When I went to go turn them all back on, I got my network connection back, but I couldn't (and still can't) enable the Multiplexor protocol. When I select it and click 'Ok', a dialog informs me that my selections will cause it to be disabled:

If I click No, it returns me to the 'Ethernet Properties' sheet with the multiplexor protocol disabled. If I click Yes, it unchecks the multiplexor protocol and then closes the dialog and property sheet.

I have a Windows Server 2012 VM running on Hyper V 2012. I had a look at the network properties of the VM and saw that the Microsoft network adapter multiplexor driver is selected? Now i have a download link for it, but i can't download it without internet connection on my other computer. Someone please help me, i need to know how to connect to the internet. If the Microsoft Network Adapter Multiplexor Protocol is not the problem, i don't know what is. Would appreciate any help. Sep 20, 2019  Now i have a download link for it, but i can't download it without internet connection on my other computer. Someone please help me, i need to know how to connect to the internet. If the Microsoft Network Adapter Multiplexor Protocol is not the problem, i. Which Network Protocols should I enable or disable for my PC? My PC usage and router set up: - file downloading while also browsing web or streaming video - I don't do any lan/network sharing - Torrent file sharing - QOS is disabled on my router - The PC is connected with Ethernet cable My current settings Client for Microsoft Networks.

The googler wasn't very helpful, here. There are a few threads out there in which users express the same issue, but the support they received was quite useless.

I also tried to do this in PowerShell to see if it would either a) just work, or if it would b) give me a more useful error message.

Turns out that was really too much to hope for.

While reading it did occur to me to make sure the NdisImPlatform service was running, and I made sure using sc.exe:

After this, I tried the things I described above again, but to no avail.

Also, ultimately this is yak-shaving in order to get bridged networking to work in VirtualBox, and so I thought I might try to repair the VirtualBox installation (by running the installer again), but that didn't help either.

Anybody know why this is happening in Windows 10 and how I can fix it?

Ben Collins
Ben CollinsBen Collins
6052 gold badges10 silver badges24 bronze badges

3 Answers

Microsoft Network Adapter Multiplexor Protocol should be left unticked. It is only used with NIC Teaming - i.e. where you have two physical network interfaces that are being used in a load balancing or redundant configuration. In that case the two physical NICs have only this binding ticked (all others cleared), and the team adapter has the normal bindings ticked - but not this one.

NickNick

What version of Virtual Box are you running - I had the same problems, but decided to upgrade to the newly released version 5 of VirtualBox - which fixed the network adapters not displaying in Bridged mode, but I still have problems getting into the VM - Port 22 & 80 just won't connect inbound.

I can go out of the VM to the internet and can start (and connect to) the machine etc with the VirtualBox program, but I like to run things headless with VirtualBox manager on the command-line. :(

Matt DMatt D

Ultimately I never found a way to fix this directly; I installed Virtual Box 5 - which I didn't realize had released until I was looking for a solution to this - and things went back to working.

Ben CollinsBen Collins
6052 gold badges10 silver badges24 bronze badges

Not the answer you're looking for? Browse other questions tagged networkingvirtualboxwindows-10 or ask your own question.

-->

Applies to: Windows Server (Semi-Annual Channel), Windows Server 2016

In this topic, we provide you with instructions to deploy Converged NIC in a Teamed NIC configuration with Switch Embedded Teaming (SET).

The example configuration in this topic describes two Hyper-V hosts, Hyper-V Host 1 and Hyper-V Host 2. Both hosts have two network adapters. On each host, one adapter is connected to the 192.168.1.x/24 subnet, and one adapter is connected to the 192.168.2.x/24 subnet.

Step 1. Test the connectivity between source and destination

Ensure that the physical NIC can connect to the destination host. This test demonstrates connectivity by using Layer 3 (L3) - or the IP layer - as well as the Layer 2 (L2) virtual local area networks (VLAN).

  1. View the first network adapter properties.

    Results:

    NameInterfaceDescriptionifIndexStatusMacAddressLinkSpeed
    Test-40G-1Mellanox ConnectX-3 Pro Ethernet Adapter11UpE4-1D-2D-07-43-D040 Gbps
  1. View additional properties for the first adapter, including the IP address.

    Results:

    ParameterValue
    IPAddress192.168.1.3
    InterfaceIndex11
    InterfaceAliasTest-40G-1
    AddressFamilyIPv4
    TypeUnicast
    PrefixLength24
  1. View the second network adapter properties.

    Results:

    NameInterfaceDescriptionifIndexStatusMacAddressLinkSpeed
    TEST-40G-2Mellanox ConnectX-3 Pro Ethernet A..#213UpE4-1D-2D-07-40-7040 Gbps
  1. View additional properties for the second adapter, including the IP address.

    Results:

    ParameterValue
    IPAddress192.168.2.3
    InterfaceIndex13
    InterfaceAliasTEST-40G-2
    AddressFamilyIPv4
    TypeUnicast
    PrefixLength24
  1. Verify that other NIC Team or SET member pNICs has a valid IP address.

    Use a separate subnet, (xxx.xxx.2.xxx vs xxx.xxx.1.xxx), to facilitate sending from this adapter to the destination. Otherwise, if you locate both pNICs on the same subnet, the Windows TCP/IP stack load balances among the interfaces and simple validation becomes more complicated.

Step 2. Ensure that source and destination can communicate

In this step, we use the Test-NetConnection Windows PowerShell command, but if you can use the ping command if you prefer.

  1. Verify bi-directional communication.

    Results:

    ParameterValue
    ComputerName192.168.1.5
    RemoteAddress192.168.1.5
    InterfaceAliasTest-40G-1
    SourceAddress192.168.1.3
    PingSucceededFalse
    PingReplyDetails (RTT)0 ms

In some cases, you might need to disable Windows Firewall with Advanced Security to successfully perform this test. If you disable the firewall, keep security in mind and ensure that your configuration meets your organization's security requirements.

  1. Disable all firewall profiles.

  2. After disabling the firewall profiles, test the connection again.

    Results:

    ParameterValue
    ComputerName192.168.1.5
    RemoteAddress192.168.1.5
    InterfaceAliasTest-40G-1
    SourceAddress192.168.1.3
    PingSucceededFalse
    PingReplyDetails (RTT)0 ms
  1. Verify the connectivity for additional NICs. Repeat the previous steps for all subsequent pNICs included in the NIC or SET team.

    Results:

    ParameterValue
    ComputerName192.168.2.5
    RemoteAddress192.168.2.5
    InterfaceAliasTest-40G-2
    SourceAddress192.168.2.3
    PingSucceededFalse
    PingReplyDetails (RTT)0 ms

Step 3. Configure the VLAN IDs for NICs installed in your Hyper-V hosts

Many network configurations make use of VLANs, and if you are planning to use VLANs in your network, you must repeat the previous test with VLANs configured.

For this step, the NICs are in ACCESS mode. However, when you create a Hyper-V Virtual Switch (vSwitch) later in this guide, the VLAN properties are applied at the vSwitch port level.

Because a switch can host multiple VLANs, it is necessary for the Top of Rack (ToR) physical switch to have the port that the host is connected to configured in Trunk mode.

Note

Consult your ToR switch documentation for instructions on how to configure Trunk mode on the switch.

The following image shows two Hyper-V hosts with two network adapters each that have VLAN 101 and VLAN 102 configured in network adapter properties.

Tip

According to the Institute of Electrical and Electronics Engineers (IEEE) networking standards, the Quality of Service (QoS) properties in the physical NIC act on the 802.1p header that is embedded within the 802.1Q (VLAN) header when you configure the VLAN ID.

  1. Configure the VLAN ID on the first NIC, Test-40G-1.

    Results:

    NameDisplayNameDisplayValueRegistryKeywordRegistryValue
    TEST-40G-1VLAN ID101VlanID{101}

Microsoft Network Adapter Multiplexor Driver Download

  1. Restart the network adapter to apply the VLAN ID.

  2. Ensure the Status is Up.

    Results:

    NameInterfaceDescriptionifIndexStatusMacAddressLinkSpeed
    Test-40G-1Mellanox ConnectX-3 Pro Ethernet Ada..11UpE4-1D-2D-07-43-D040 Gbps
  1. Configure the VLAN ID on the second NIC, Test-40G-2.

    Results:

    NameDisplayNameDisplayValueRegistryKeywordRegistryValue
    TEST-40G-2VLAN ID102VlanID{102}
  1. Restart the network adapter to apply the VLAN ID.

  2. Ensure the Status is Up.

    Results:

    NameInterfaceDescriptionifIndexStatusMacAddressLinkSpeed
    Test-40G-2Mellanox ConnectX-3 Pro Ethernet Ada..11UpE4-1D-2D-07-43-D140 Gbps

Important

It might take several seconds for the device to restart and become available on the network.

  1. Verify the connectivity for the first NIC, Test-40G-1.

    If connectivity fails, inspect the switch VLAN configuration or destination participation in the same VLAN.

    Results:

    ParameterValue
    ComputerName192.168.1.5
    RemoteAddress192.168.1.5
    InterfaceAliasTest-40G-1
    SourceAddress192.168.1.5
    PingSucceededTrue
    PingReplyDetails (RTT)0 ms
  1. Verify the connectivity for the first NIC, Test-40G-2.

    If connectivity fails, inspect the switch VLAN configuration or destination participation in the same VLAN.

    Results:

    ParameterValue
    ComputerName192.168.2.5
    RemoteAddress192.168.2.5
    InterfaceAliasTest-40G-2
    SourceAddress192.168.2.3
    PingSucceededTrue
    PingReplyDetails (RTT)0 ms

Microsoft Network Adapter Driver Download

Important

It's not uncommon for a Test-NetConnection or ping failure to occur immediately after you perform Restart-NetAdapter. So wait for the network adapter to fully initialize, and then try again.

If the VLAN 101 connections work, but the VLAN 102 connections don't, the problem might be that the switch needs to be configured to allow port traffic on the desired VLAN. You can check for this by temporarily setting the failing adapters to VLAN 101, and repeating the connectivity test.

The following image shows your Hyper-V hosts after successfully configuring VLANs.

Step 4. Configure Quality of Service (QoS)

Note

You must perform all of the following DCB and QoS configuration steps on all hosts that are intended to communicate with each other.

  1. Install Data Center Bridging (DCB) on each of your Hyper-V hosts.

    • Optional for network configurations that use iWarp.
    • Required for network configurations that use RoCE (any version) for RDMA services.

    Results:

    SuccessRestart NeededExit CodeFeature Result
    TrueNoSuccess{Data Center Bridging}
  1. Set the QoS policies for SMB-Direct:

    • Optional for network configurations that use iWarp.
    • Required for network configurations that use RoCE (any version) for RDMA services.

    In the example command below, the value “3” is arbitrary. You can use any value between 1 and 7 as long as you consistently use the same value throughout the configuration of QoS policies.

    Results:

    ParameterValue
    NameSMB
    OwnerGroup Policy (Machine)
    NetworkProfileAll
    Precedence127
    JobObject
    NetDirectPort445
    PriorityValue3
  1. Set additional QoS policies for other traffic on the interface.

    Results:

    ParameterValue
    NameDEFAULT
    OwnerGroup Policy (Machine)
    NetworkProfileAll
    Precedence127
    TemplateDefault
    JobObject
    PriorityValue0
  1. Turn on Priority Flow Control for SMB traffic, which is not required for iWarp.

    Results:

    PriorityEnabledPolicySetIfIndexIfAlias
    0FalseGlobal
    1FalseGlobal
    2FalseGlobal
    3TrueGlobal
    4FalseGlobal
    5FalseGlobal
    6FalseGlobal
    7FalseGlobal

IMPORTANTIf your results do not match these results because items other than 3 have an Enabled value of True, you must disable FlowControl for these classes.

Under more complex configurations, the other traffic classes might require flow control, however these scenarios are outside the scope of this guide.

  1. Enable QoS for the first NIC, Test-40G-1.

    Capabilities:

    ParameterHardwareCurrent
    MacSecBypassNotSupportedNotSupported
    DcbxSupportNoneNone
    NumTCs(Max/ETS/PFC)8/8/88/8/8

OperationalTrafficClasses:

Cp2104 usb to uart driver. The CP210x USB to UART Bridge Virtual COM Port (VCP) drivers are required for device operation as a Virtual COM Port to facilitate host communication with CP210x products. These devices can also interface to a host using the direct access driver.

TCTSABandwidthPriorities
0Strict0-7

OperationalFlowControl:

Priority 3 Enabled

OperationalClassifications:

ProtocolPort/TypePriority
Default0
NetDirect4453
  1. Enable QoS for the second NIC, Test-40G-2.

    Capabilities:

    ParameterHardwareCurrent
    MacSecBypassNotSupportedNotSupported
    DcbxSupportNoneNone
    NumTCs(Max/ETS/PFC)8/8/88/8/8

OperationalTrafficClasses:

TCTSABandwidthPriorities
0Strict0-7

OperationalClassifications:

ProtocolPort/TypePriority
Default0
NetDirect4453
  1. Reserve half the bandwidth to SMB Direct (RDMA)

    Results:

    NameAlgorithmBandwidth(%)PriorityPolicySetIfIndexIfAlias
    SMBETS503Global
  1. View the bandwidth reservation settings:

    Results:

    NameAlgorithmBandwidth(%)PriorityPolicySetIfIndexIfAlias
    [Default]ETS500-2,4-7Global
    SMBETS503Global
  1. (Optional) Create two additional traffic classes for tenant IP traffic.

    Results:

    NameAlgorithmBandwidth(%)PriorityPolicySetIfIndexIfAlias
    IP1ETS101Global

Results:

NameAlgorithmBandwidth(%)PriorityPolicySetIfIndexIfAlias
IP2ETS102Global
  1. View the QoS traffic classes.

    Results:

    NameAlgorithmBandwidth(%)PriorityPolicySetIfIndexIfAlias
    [Default]ETS300,4-7Global
    SMBETS503Global
    IP1ETS101Global
    IP2ETS102Global
  2. (Optional) Override the debugger.

    By default, the attached debugger blocks NetQos.

    Results:

Step 5. Verify the RDMA configuration (Mode 1)

You want to ensure that the fabric is configured correctly prior to creating a vSwitch and transitioning to RDMA (Mode 2).

The following image shows the current state of the Hyper-V hosts.

  1. Verify the RDMA configuration.

    Results:

    NameInterfaceDescriptionEnabled
    TEST-40G-1Mellanox ConnectX-4 VPI Adapter #2True
    TEST-40G-2Mellanox ConnectX-4 VPI AdapterTrue
  1. Determine the ifIndex value of your target adapters.

    You use this value in subsequent steps when you run the script you download.

    Results:

    InterfaceAliasInterfaceIndexIPv4Address
    TEST-40G-114{192.168.1.3}
    TEST-40G-213{192.168.2.3}
  1. Download the DiskSpd.exe utility and extract it into C:TEST.

  2. Download the Test-RDMA PowerShell script to a test folder on your local drive, for example, C:TEST.

  3. Run the Test-Rdma.ps1 PowerShell script to pass the ifIndex value to the script, along with the IP address of the first remote adapter on the same VLAN.

    In this example, the script passes the ifIndex value of 14 on the remote network adapter IP address 192.168.1.5.

    Results:

    Note

    If the RDMA traffic fails, for the RoCE case specifically, consult your ToR Switch configuration for proper PFC/ETS settings that should match the Host settings. Refer to the QoS section in this document for reference values.

  4. Run the Test-Rdma.ps1 PowerShell script to pass the ifIndex value to the script, along with the IP address of the second remote adapter on the same VLAN.

    In this example, the script passes the ifIndex value of 13 on the remote network adapter IP address 192.168.2.5.

    Results:

What Is Microsoft Network Adapter Multiplexor Protocol

Step 6. Create a Hyper-V vSwitch on your Hyper-V hosts

The following image shows Hyper-V Host 1 with a vSwitch.

  1. Create a vSwitch in SET mode on Hyper-V host 1.

    Result:

    NameSwitchTypeNetAdapterInterfaceDescription
    VMSTESTExternalTeamed-Interface
  1. View the physical adapter team in SET.

    Results:

  2. Display two views of the host vNIC

    Results:

    NameInterfaceDescriptionifIndexStatusMacAddressLinkSpeed
    vEthernet (VMSTEST)Hyper-V Virtual Ethernet Adapter #228UpE4-1D-2D-07-40-7180 Gbps
  1. View additional properties of the host vNIC.

    Results:

    NameIsManagementOsVMNameSwitchNameMacAddressStatusIPAddresses
    VMSTESTTrueVMSTESTE41D2D074071{Ok}
  1. Test the network connection to the remote VLAN 101 adapter.

    Results:

Step 7. Remove the Access VLAN setting

In this step, you remove the ACCESS VLAN setting from the physical NIC and to set the VLANID using the vSwitch.

You must remove the ACCESS VLAN setting to prevent both auto-tagging the egress traffic with the incorrect VLAN ID and from filtering ingress traffic which doesn't match the ACCESS VLAN ID.

  1. Remove the setting.

  2. Set the VLAN ID.

    Results:

  3. Test the network connection.

    Results:

    IMPORTANT If your results are not similar to the example results and ping fails with the message 'WARNING: Ping to 192.168.1.5 failed -- Status: DestinationHostUnreachable,' confirm that the “vEthernet (VMSTEST)” has the proper IP address.

    If the IP address is not set, correct the issue.

  4. Rename the Management NIC.

    Results:

    NameIsManagementOsVMNameSwitchNameMacAddressStatusIPAddresses
    CORP-External-SwitchTrueCORP-External-Switch001B785768AA{Ok}
    MGTTrueVMSTESTE41D2D074071{Ok}
  1. View additional NIC properties.

    Results:

    NameInterfaceDescriptionifIndexStatusMacAddressLinkSpeed
    vEthernet (MGT)Hyper-V Virtual Ethernet Adapter #228UpE4-1D-2D-07-40-7180 Gbps

Step 8. Test Hyper-V vSwitch RDMA

The following image shows the current state of your Hyper-V hosts, including the vSwitch on Hyper-V Host 1.

  1. Set the priority tagging on the Host vNIC to complement the previous VLAN settings.

    Results:

    Name : MGT
    IeeePriorityTag : On

  2. Create two host vNICs for RDMA and connect them to the vSwitch VMSTEST.

  3. View the Management NIC properties.

    Results:

    NameIsManagementOsVMNameSwitchNameMacAddressStatusIPAddresses
    CORP-External-SwitchTrueCORP-External-Switch001B785768AA{Ok}
    MgtTrueVMSTESTE41D2D074071{Ok}
    SMB1TrueVMSTEST00155D30AA00{Ok}
    SMB2TrueVMSTEST00155D30AA01{Ok}

Step 9. Assign an IP address to the SMB Host vNICs vEthernet (SMB1) and vEthernet (SMB2)

The TEST-40G-1 and TEST-40G-2 physical adapters still have an ACCESS VLAN of 101 and 102 configured. Because of this, the adapters tag the traffic - and ping succeeds. Previously, you configured both pNIC VLAN IDs to zero, then set the VMSTEST vSwitch to VLAN 101. After that, you were still able to ping the remote VLAN 101 adapter by using the MGT vNIC, but there are currently no VLAN 102 members.

  1. Remove the ACCESS VLAN setting from the physical NIC to prevent it from both auto-tagging the egress traffic with the incorrect VLAN ID and to prevent it from filtering ingress traffic that doesn't match the ACCESS VLAN ID.

    Results:

  2. Test the remote VLAN 102 adapter.

    Results:

  3. Add a new IP address for interface vEthernet (SMB2).

    Results:

  4. Test the connection again.

  5. Place the RDMA Host vNICs on the pre-existing VLAN 102.

    Results:

  6. Inspect the mapping of SMB1 and SMB2 to the underlying physical NICs under the vSwitch SET Team.

    The association of Host vNIC to Physical NICs is random and subject to rebalancing during creation and destruction. In this circumstance, you can use an indirect mechanism to check the current association. The MAC addresses of SMB1 and SMB2 are associated with the NIC Team member TEST-40G-2. This is not ideal because Test-40G-1 does not have an associated SMB Host vNIC, and will not allow for utilization of RDMA traffic over the link until an SMB Host vNIC is mapped to it.

    Results:

  7. View the VM network adapter properties.

    Results:

  8. View the network adapter team mapping.

    The results should not return information because you have not yet performed mapping.

  9. Map SMB1 and SMB2 to separate physical NIC team members, and to view the results of your actions.

    Important

    Ensure that you complete this step before proceeding, or your implementation fails.

    Results:

  10. Confirm the MAC associations created previously.

    Results:

  11. Test the connection from the remote system because both Host vNICs reside on the same subnet and have the same VLAN ID (102).

    Results:

    Results:

  12. Set the name, switch name, and priority tags.

    Results:

  13. View the vEthernet network adapter properties.

    Results:

  14. Enable the vEthernet network adapters.

    Results:

Step 10. Validate the RDMA functionality.

You want to validate the RDMA functionality from the remote system to the local system, which has a vSwitch, to both members of the vSwitch SET team.

Because both Host vNICs (SMB1 and SMB2) are assigned to VLAN 102, you can select the VLAN 102 adapter on the remote system.

In this example, the NIC Test-40G-2 does RDMA to SMB1 (192.168.2.111) and SMB2 (192.168.2.222).

Tip

You might need to disable the Firewall on this system. Consult your fabric policy for details.

Results:

  1. View the network adapter properties.

    Results:

  2. View the network adapter RDMA information.

    Results:

  3. Perform the RDMA traffic test on the first physical adapter.

    Results:

  4. Perform the RDMA traffic test on the second physical adapter.

    Results:

  5. Test for RDMA traffic from the local to the remote computer.

    Results:

  6. Perform the RDMA traffic test on the first virtual adapter.

    Results:

  7. Perform the RDMA traffic test on the second virtual adapter.

    Results:

The final line in this output, 'RDMA traffic test SUCCESSFUL: RDMA traffic was sent to 192.168.2.5,' shows that you have successfully configured Converged NIC on your adapter.

Microsoft Network Adapter Multiplexor Protocol Won't Enable

Related topics